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Abstract. The new method for computation of the physical characteristics of quantum systems
with many degrees of freedom is described. This method is based on the representation of
the matrix element of the evolution operator in Euclidean metrics in a form of the functional
integral with a certain measure in the corresponding space and on the use of approximation
formulae which we constructed for this kind of integral. The method does not require preliminary
discretization of space and time and allows us to use the deterministic algorithms. This approach
proved to have important advantages over the other known methods, including the higher
efficiency of computations. Examples of application of the method to the numerical study
of some potential nuclear models as well as comparison of results with the experimental data
and with the values obtained by the other authors are presented.

1. Introduction

Investigation of quantum systems consisting of many interacting particles is one of
the fundamental problems in physics [1]. The convenient framework for study of the
systems with many degrees of freedom is a path-integral approach [2]. Being one of
the most important mathematical techniques for solution of the wide class of problems in
computational physics [3], path integrals provide a useful tool for study of the variety
of nuclear systems which are otherwise not amenable to definitive analysis through
perturbative, variational or stationary-phase approximations, etc (see [4]). However, the
existing approaches to path integrals in physics are not always correct in a mathematical
sense and the usual method of their computation is Monte Carlo, which gives the results
only as probabilistic averages and requires too much computer resources to obtain the good
statistics. Moreover, when the nuclear many-body problem is being formulated on a lattice,
the computation of characteristics of heavy nucleus would require the lattice size which
is four to five orders of magnitude more than any lattice gauge calculation and which is
hardly possible on any foreseeable computer [4]. First of all it concerns the ground state
properties (binding energies, masses, etc). The existing results of computation of the binding
energy even for the light nuclei by means of the variational or Green function Monte Carlo
method, as well as by the coupled cluster and Faddeev equation methods, differ one from
the other and from the experimental values more than the estimated errors of calculation
(see [5, 6]), while requiring several hours on Cray–YMP and Cray-2 computers [5]. It is
clear that the creation of the new methods for solution of such a complicated problem is
of high importance. Increasing attention is being paid nowadays to the construction of
deterministic algorithms for computation of path integrals which would be more effective
than conventional Monte Carlo (see [7–9]). For instance, in [7] the authors discuss the
method of path summation based on the introduction of the ‘short-time’ propagator in the
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range 0< t < ε, which is correct up to O(ε2) and on the successive iterations to the finite
imaginary timet to obtain the ground-state energy of a quantum system. It should be noted
that the main physical properties such as energy spectrum, wavefunctions squared, etc can
be reproduced correctly only in a limitt → ∞. In [8] and in extending its results to [9] the
method of evaluation of discretized path integrals is developed on the basis of iteration of the
short-time approximation and on the direct matrix multiplication. The authors state that this
approach is more along the original lines of Feynman of integrating over all space at each
intermediate time rather than accepting or rejecting paths according to a Markov process in
Monte Carlo algorithms. However, their method also assumes the preliminary discretization
and it can be applied to the systems with only a few quantum degrees of freedom. It is also
limited by the size of the matrix that can be handled on existing computers (see [8]). It means
that using this approach it is difficult to treat problems in which the system is delocalized
over large distances. The method reported in [8] and [9] contains several parameters which
affect the accuracy of results. The choice of these parameters is not clear and sometimes the
decrease of spacing (which corresponds to approaching the continuum limit) gives worse
result and requires more iterations to improve it (see [9]).

According to the recent achievements in the measure theory and in the development
of functional integration methods (see, e.g. [10]) as well as in the functional methods
in quantum physics [11] one can create the mathematically well-grounded methods for
computation of path integrals. One of the promising approaches is the construction of
approximation formulae which are exact on a given class of functionals [10]. Based on
the rigorous definition of a functional integral in complete separable metric space in the
framework of this approach we elaborated the new numerical method of computation of
path integrals [12]. This method does not require preliminary discretization of space and
time and allows us to obtain the mathematically well-grounded physical results with a
guaranteed (not probabilistic) error estimate. It permits the straightforward computation
of functional integrals over all space without any simplifying assumption (perturbation
expansion, semiclassical or short-time approximation, etc). Our approximation formulae
can be interpreted as quadratures in functional spaces. They are exact on a class of
polynomial functionals of a given degree. Our method contains, therefore, all advantages
of deterministic approach and is free from the limitations of other methods mentioned
above. Under determined conditions we have proved the convergence of approximations to
the exact value of the integral and estimated the remainder which gives upper and lower
bounds of the result. We have studied in detail the functional measure of the Gaussian
type and some of its important particular cases such as conditional Wiener measure in the
space of continuous functions [13] in Euclidean quantum mechanics (or quantum statistical
mechanics) and the functional measure in a Schwartz distribution space in two-dimensional
Euclidean quantum field theory [14]. Numerical computations show [14] that our method
gives significant (by an order of magnitude) economy of computer time and memory versus
conventional Monte Carlo method used by other authors in the problems which we have
considered. This approach is also proven to have advantages in the case of high dimensions
when the other deterministic methods loose their efficiency [15]. Our deterministic algorithm
of computation of functional integrals which we use in quantum statistical physics instead
of traditional stochastic methods enable us to make a constructive proof of existence of
continuum limit of the lattice (discretized) path integrals and to compute the physical
quantities in this limit within the determined error bars. Using this method we performed the
numerical investigation of the topological susceptibility and computed theθ -vacua energy in
continuum for the first time [14]. Our algorithm realized in a program written in FORTRAN
has been implemented on CDC-6500 and Convex C220 computers. However, it is also
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possible to use personal computers since the method does not require too much computer
resources. The source of the program is available from the author upon request.

In the present paper we discuss the mathematical foundations of the method and its
numerical aspects. We extend it to the case of fermions (i.e. the antisymmetrized states) in
continuum limit and apply it to the study of some potential nuclear models. The comparison
of our numerical results with the experimental data and with the values obtained by the
other authors which used both probabilistic and deterministic techniques demonstrates the
advantages of our method.

2. Mathematical foundations

The most important for applications are integrals with respect to a measure of the Gaussian
type [11]. It contains various types of measures including the well known conditional
Wiener measure. So, we consider the Lebesgue integral∫

X

F [x] dµ(x) (1)

whereF [x] is an arbitrary real measurable functional on a complete separable metric space
X. Gaussian measureµ on X is a normalized measure defined on Borelσ -algebra of the
spaceX in the following way [10]. The value of this measure on an arbitrary cylinder set

Qϕ1...ϕn (An) = {x ∈ X : [〈ϕ1, x〉, 〈ϕ2, x〉, . . . , 〈ϕn, x〉] ∈ An}
whereϕ1 . . . ϕn are the linear-independent elements of the spaceX′ andAn (n = 1, 2, . . .)
are arbitrary Borel manifolds inRn, is given by the formula

µ{Qϕ1...ϕn (An)} = (2π)−n/2(detK)−1/2
∫
An

exp{− 1
2(K

−1[u−M(ϕ)], [u−M(ϕ)])} du.

HereKi,j = K(ϕi, ϕj ), u = (u1, u2, . . . , un),

M(ϕ) = {M(ϕ1),M(ϕ2), . . . ,M(ϕn)}

(K−1[u−M(ϕ)], [u−M(ϕ)]) =
n∑

i,j=1

K−1
i,j [ui −M(ϕi)][uj −M(ϕj )]

K(ϕ,ψ) is a correlation functional of the measure,M(ϕ) is a mean value [10]. Under
certain conditions, functionalsK(ϕ,ψ) andM(ϕ), ϕ,ψ ∈ X′ determine the countable-
additive function of manifolds on a Borelσ -algebra of the spaceX.

In the particular case of conditional Wiener measure dWx in the spaceC0 of continuous
functionsC0 ≡ {x(t) ∈ C[0, 1], x(0) = x(1) = 0} we have

〈ϕ, x〉 =
∫ 1

0
x(t) dϕ(t)

and

K(ϕ,ψ) =
∫
C0

〈ϕ, x〉〈ψ, x〉 dWx =
∫ 1

0

∫ 1

0
K(t, s)dϕ(t) dψ(s)

where

K(t, s) =
∫
C0

x(t)x(s) dWx.

Conditional Wiener measure is characterized by the following correlation function and mean
value [10]:

K(t, s) = min{t, s} − ts M(ϕ) = 0. (2)
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According to the Feynman–Kac formula, matrix elementZif (β) of the evolution
operator exp{−βH }, whereH = − 1

21+ V is written as follows:

Zif (β) = Z(xi, xf , β) ≡ 〈xf |e−βH |xi〉

=
∫
Cxi ,xf ,β

exp

{
−

∫ β

0
V [x(t)] dt

}
dWx. (3)

The integration in (3) is performed over the manifold of continuous functionsx(t) ∈ C[0, β]
with conditions x(0) = xi , x(β) = xf . It should be noted that as distinct from the
conventional path-integral approach, integral (3) does not contain the kinetic term (the
first derivative squared) since it is included now to the measure of integration, and this
circumstance simplifies the numerical simulations. After the appropriate change of the
functional variables we can rewrite the integral (3) with the periodic boundary conditions
xi = xf = x in the form of standard conditional Wiener integral in the spaceC0:

Z(x, x, β) = (2πβ)−1/2
∫
C0

exp

{
− β

∫ 1

0
V [

√
β x(t)+ x] dt

}
dWx. (4)

Using (4) we can compute various quantities in Euclidean quantum mechanics (or in
quantum statistical mechanics accordingly). Particularly, the free energy of the system
is defined as follows:

f (β) = − 1

β
lnZ(β)

where

Z(β) = Tr exp{−βH } =
∫ ∞

−∞
Z(x, x, β)dx.

The ground state energy can be obtained in the following way:

E0 = 〈0|H |0〉 = lim
β→∞

f (β).

We can also define the propagator

G(τ) = 〈0|x(0)x(τ )|0〉 = lim
β→∞

0(τ)

where the correlation function

0(τ) = 〈x(0)x(τ )〉 = 1√
2πβ

1

Z(β)

∫ ∞

−∞

∫
C0

exp

{
− β

∫ 1

0
V [

√
βx(t)+ x] dt

}
×

[√
βx

(
τ

β

)
+ x

]
x dWx dx.

The energy gap between the ground and the first excited states can be computed as follows:

1E = E1 − E0 = − lim
τ→∞

d

dτ
lnG(τ).

The ground state wavefunction is equal to

|90(x)|2 = lim
β→∞

[exp{E0β}Z(x, x, β)].

The generalization of (3) to the case of higher dimensions is obvious.
When studying the nuclear many-body problems, one needs the representation

for the many-fermion evolution operator. A number of alternative functional
integral representations exist for the many-fermion systems, including the many-particle
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generalization of the path integral, an integral over an auxiliary field, integrals over the
overcomplete sets of boson coherent states, determinants and Grassman variables (see [16]).
Following the idea proposed in [16], in our present work we used the method based on
insertion of a complete set of antisymmetrized many-particle states|x1, . . . xA〉 (A is the
number of particles) at each time step of the discretized segment [0, β]. As shown in [16],
for the infinitesimal timeε

〈xn1 . . . xnA|e−εH |xn−1
1 . . . xn−1

A 〉 = exp

{
− 1

2ε

A∑
i=1

(xni − xn−1
i )2

}
× det

∣∣∣∣exp

{
− 1

2ε
[(xni − xn−1

j )2 − (xni − xn−1
i )2]

}∣∣∣∣
× exp

{
− ε

4

∑
i,j

[V (|xn−1
i − xn−1

j |)+ V (|xni − xnj |)]
}

where the superscripts denote time labels and the subscripts denote particle,

xni = xi(tn) tn = εn i = 1, . . . , A.

The sign of the matrix element at each step arising from the determinant is just the sign
of the permutation required to bring thexn into the same order as thexn−1. Hence the
cummulative sign after any number of steps is path-independent and is the sign of the
permutation required to make the final order equal to the initial order [16]. It does not
affect matrix elements of the evolution operator with antisymmetrized states or the trace of
the evolution operator times a symmetric operator (see [16]). As reported in [4], in more
than one spatial dimension, the interface between positive and negative contributions to the
functional integral degrades the statistical accuracy such that the very good trial functions
and exceedingly large ensembles are required to obtain useful results (it seems, however,
that in our deterministic approach no such problems would arise). In one dimension the
antisymmetry completely specifies the nodal points and a positive definite result may be
obtained evolving the wavefunction in the ordered subspacex1 < x2 < x3 < · · · < xA [4].
In this domain the determinant may be replaced by the following product in the limitε → 0
[16]:

det

∣∣∣∣exp

{
− 1

2ε
[(xni − xn−1

j )2 − (xni − xn−1
i )2]

}∣∣∣∣
−→

A∏
i=2

(
1 − exp

{
− 1

2ε
(xni − xni−1)(x

n−1
i − xn−1

i−1 )

})
so that the matrix elementZ(x, x, β) can be written as follows [17, 4]:

Z(x, x, β) = lim
ε→0

Zε(x, x, β) ε = β

N

where

Zε(x, x, β) = (2πε)−NA/2
∫
Pε(x

1
1, . . . , x

N
1 , . . . , x

1
A, . . . , x

N
A ) dx1

1 . . .dx
N
A

Pε = exp

{
− 1

2ε

A∑
i=1

N∑
n=1

(xni − xn−1
i )2

}

× exp

{
− ε

2

N∑
n=1

∑
i>j

[V (|xni − xnj |)+ V (|xn−1
i − xn−1

j |)]
}
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×
N∏
n=1

A∏
i=2

[
1 − exp

{
− 1

2ε
(xni − xni−1)(x

n−1
i − xn−1

i−1 )

}]
. (5)

Some results on construction of the positive-definite functional integral representation for
the fermions in dimensionsd > 2 are reported in paper [18].

We can make a straightforward passage to the continuum limit in (5). Namely, we have
found, that whenε → 0 (orN → ∞), β fixed,Zε(x, x, β) → Z(x, x, β), where

Z(x, x, β) = (2πβ)−A/2
∫
C̃A0

exp

{
− β

∑
i>j

∫ 1

0
V [(

√
βxi(t)+ xi)

−(
√
βxj (t)+ xj )] dt

}
dWx1 . . .dWxA. (6)

Here C̃A0 is a subset of the spaceCA0 which is the direct multiplication ofA copies of the
spaceC0 defined above.C̃A0 consists of the sequences of elementsx1(t), x2(t), . . . , xA(t),
xi ∈ C0, i = 1, 2, . . . , A such that√
βxi+1(t)+ xi+1 >

√
βxi(t)+ xi for t ∈ [0, β] i = 1, 2, . . . , A− 1.

This expression is obtained on the basis of the definition of conditional Wiener integral given
in [19]. It is essential that the double product in (5) tends to the unity in the continuum
limit ε → 0.

3. Outline of the numerical method

3.1. Composite approximation formulae

When performing the computations for quantum systems with many degrees of freedom
one has to evaluate multiple functional integrals∫

X

. . .

∫
X︸ ︷︷ ︸

m

F [x1, . . . , xm] dµ(x1) . . .dµ(xm) ≡
∫
Xm
F [x] dµ(m)(x). (7)

The main problem is to reduce the integral over an abstract spaceX to some expression
suitable for computations. It is clear that according to (7) we can consider the multiple
functional integral as a single one over the multiplication of spacesXm. For the functional
integrals with an abstract Gaussian measure in complete separable metric spaces we derived
some expressions which can be used for the numerical evaluation of these integrals
[12]. Substituting the parameters of the measure (2) into these expressions we obtain the
approximations for conditional Wiener integrals used in quantum mechanics. Particularly,
the approximation formula which we call ‘composite’ looks as follows:∫
C0

F [x] dWx = (2π)−n/2
∫
Rn

exp{− 1
2(u, u)}2−m

×
∫ 1

−1
· · ·

∫ 1

−1︸ ︷︷ ︸
m

F [ρ̃(m)(v, ·)− ρ̃(m)n (v, ·)+ Ũn(u, ·)] dv du+ R(m)
n (F ) (8)

where

ρ̃m(v, t) =
m∑
k=1

c
(m)
k ρ̃(vk, t)
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ρ̃(v, t) =
{

−t sign(v) t 6 |v|
(1 − t) sign(v) t > |v|

ρ̃(m)n (v, t) =
n∑
k=1

2

kπ
sin(kπt)

m∑
j=1

c
(m)
j sign(vj ) cos(kπvj )

Ũn(u, t) =
n∑
k=1

√
2

kπ
uk sin(kπt)

[c(m)k ]2 are the roots ofQm(z) = ∑m
k=1(−1)kzm−k/k!, z ∈ R andR(m)

n (F ) is the remainder
term.

Formula (8) replaces the evaluation of a functional integral by the computation of an
n+m-fold Riemann integral, wheren andm are arbitrary natural parameters. This formula
is exact (i.e. in this caseR(m)

n (F ) = 0) for any functional multinomial of degree6 2m+ 1.
Note that the functional of the form

Pm[x] =
m∑
k=0

pk[x]

wherepk[x] is a homogeneous form ofkth order continuous onX, is called a functional
multinomial of degreem. We proved the convergence of approximations (8) to the exact
value of the integral and estimated the remainderR(m)

n (F ) in dependence onn andm. It
turns out that it is not necessary to approach the limitsn → ∞ andm → ∞ simultaneously
to ensure the convergence. Particularly, the order of convergence of (8) forn → ∞, m fixed
is O(n−(m+1)). Practical computations show (some examples will be given below) that the
good accuracy (equal or better than 0.1%) can be achieved by choosing small values ofn

andm, even equal to unity. It allows us to use the more preferable deterministic algorithms
in computations instead of stochastic (Monte Carlo) methods. Usually we employ Gaussian
or Tchebyshev quadratures to evaluate low-dimensional Riemann integrals when computing
functional integrals by our approximation formulae.

3.2. Approximation formulae with the weight

Since the functionals of the typeF [x] = exp{∫ β0 V [x(t)] dt} often appear in applications,
in many cases it is convenient to use the approximation formulae with exponential weight.
For conditional Wiener integrals

I =
∫
C0

P [x]F [x] dWx

with the weight functional

P [x] = exp

{ ∫ 1

0
[p(t)x2(t)+ q(t)x(t)] dt

}
p(t), q(t) ∈ C[0, 1]

we obtained the approximation formula of the 2m+1 order of accuracy (i.e. exact for every
functional multinomial of degree6 2m+1). This formula (we call it ‘elementary’) replaces
the functional integral by them-fold Riemann one. More precise approximations for the
large class of functionals can be achieved by the use of the ‘composite’ formulae containing
the (n+m)-fold Riemann integrals (even forn = 1). Combining these two approaches, we
derived the composite approximation formula for the conditional Wiener integrals with the
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considered weight:

I = (2π)−n/2[W(1)]−1/2 exp

{ ∫ 1

0
L2(t) dt

} ∫
Rn

exp{− 1
2(u, u)}2−m

×
∫ 1

−1
· · ·

∫ 1

−1︸ ︷︷ ︸
m

8[ρ̃(m)(v, ·)− ρ̃(m)n (v, ·)+ Ũn(u, ·)] dv du+ R(m)
n (F ). (9)

This formula is exact for every polynomial functional of degree6 2m+ 1. Here

8[x] = F [Âx + a]

Âx(t) = x(t)− 1 − t

W(t)

∫ 1

0
B(s)W(s)x(s) ds

W(t) = exp

{ ∫ 1

0
(1 − s)B(s) ds

}
a(t) =

∫ t

0
L(s) ds − 1 − t

W(t)

∫ t

0
B(s)W(s)

[ ∫ s

0
L(u) du

]
ds

L(t) =
∫ t

0
[B(s)W(s)H(s)− q(s)] ds H(t) =

∫ 1

t

q(s)
1 − s

W(s)
ds

andB(s) is the solution of differential equation

(1 − s)B ′(s)− (1 − s)B(s)− 3B(s) = 2p(s) s ∈ [0, 1] (10)

with initial condition

B(1) = − 2
3 p(1).

Note that in particular casep(t) ≡ p = constant,q(t) ≡ q = constant the Riccati equation
(10) can be solved explicitly and the approximation formula (9) aquires the significant
simplification.

The remainder of the formula can be estimated as follows:

|R(m)
n (F )| 6 Dαm+1[ξm + (2m)m+1ηm]

1

nm+1

where

D = [W(1)]−1/2 exp

{
1
2

∫ 1

0
L2(t) dt

}
α = 1 + w + 2

√
w w = 1

sin4 √
2p

(√
2p cos

√
2p − sin

√
2p

)2
(

1 − sin 2
√

2p

2
√

2p

)
ξm andηm are positive constants dependent onm and on the functionalF [13]. Particularly,
it follows from this estimate that the convergence of approximations obtained according to
(9) for n → ∞, m fixed has the order O(n−(m+1)).

3.3. Approximations with the total order of accuracy

It turns out that it is more economical to use approximation formulae possessing a given
total order of accuracy onXm to calculate them-fold functional integral [20]. In the case
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of conditional Wiener measure the composite formula of the third-order accuracy has the
form∫
Cm0

F [x] dWx = (2π)−N/2
∫
RN

exp

{
− 1

2

m∑
i=1

(u(i),u(i))

}
× 1

m

m∑
i=1

∫
R

F(Ũn1(u
(1)), . . . ,

√
m6̃i(ρ(v, ·),u(i))︸ ︷︷ ︸

i

,

. . . , Ũnm(u
(m))) du dv + RN(F ) (11)

where

ρ(v, t) =
{

−t sign(v) t 6 |v|
(1 − t) sign(v) t > |v| N =

m∑
i=1

ni

6̃i(ρ(v, t),u
(i)) = ρ(v, t)− Sni (ρ(v, t))+ Ũni (u

(i))

Sni (ρ(v, t)) = 2
ni∑
j=1

1

jπ
sin(jπt) sign(v) cos(jπv)

Ũni (u
(i)) =

√
2

ni∑
j=1

u
(i)
j

1

jπ
sin(jπt) for all i = 1, 2, . . . , m.

We compute the multidimensional Riemann integrals which appear in (11), using the
Korobov method.

For them-fold conditional Wiener integrals with the weight functional

P [x1, . . . , xm] = exp

{ m∑
i=1

∫ 1

0
[pi(t) x

2
i (t)+ qi(t) xi(t)] dt

}
we derived the following approximation formula:∫
Cm0

P [x1, . . . , xm]F [x1, . . . , xm] d(m)W x = exp

{
− 1

2

m∑
i=1

∫ 1

0
(1 − s)Bi(s) ds

}
(2m)−1

× exp

{
1
2

m∑
i=1

∫ 1

0
L2
i (t) dt

} m∑
i=1

∫ 1

−1
F [a1(·), . . . , ai−1(·),

√
m9i(v, ·)

+ai(·), ai+1(·), . . . , am(·)] dv + Rm(F ) (12)

whereBi(s) is the solution of the differential equation

(1 − s) B ′
i (s)− (1 − s)2B2

i (s)− 3Bi(s)− 2pi(s) = 0 s ∈ [0, 1]

Bi(1) = − 2
3pi(1)

(13)

and

9i(v, ·) = fi(v, ·)− σ(v, ·) Wi(t) = exp

{ ∫ 1

0
(1 − s)Bi(s) ds

}
fi(v, t) = sign(v)

1 − t

Wi(t)

[
1 +

∫ min{|v|,t}

0
Bi(s)Wi(s) ds

bigg]

ai(t) =
∫ t

0
Li(s) ds − 1 − t

Wi(t)

∫ t

0
Bi(s)Wi(s)

∫ s

0
Li(u) du ds
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Li(t) =
∫ t

0
[Bi(s)Wi(s)Ki(s)− qi(s)] ds + ci

Ki(s) =
∫ 1

s

qi(u)
1 − u

Wi(u)
du σ(v, t) =

{
sign(v) t 6 |v|
0 t > |v|

and the constantsci are determined by the condition
∫ 1

0 Li(s) ds = 0.
Approximation formula (12) is exact whenF [x] is arbitrary polynomial functional of

the third total degree onCm0 . We compute the Riemann integral in (12) using Gaussian or
Tchebyshev quadratures with the relative accuracy 0.01.

In the particular casepi(t) ≡ pi = constant the solution of the Riccati equation (13) is
the following:

Bi(s) = 1

1 − s

{√
2pi ctg

[√
2pi(1 − s)

]
− 1

1 − s

}
.

If we set alsoqi(t) ≡ qi = constant, thenai(t) can be expressed explicitly

ai(t) = qi

[
pi cos

√
1
2pi

]−1

sin

(√
1
2pi t

)
sin

(√
1
2pi(1 − t)

)
and the approximation formula (12) acquires the form∫
Cm0

P [x1, . . . , xm]F [x1, . . . , xm] d(m)W x = (2m)−1
m∏
i=1

( √
2pi

sin
√

2pi

)1
2

× exp

{
q2
i

(2pi)3/2

[
tan

√
1
2pi −

√
1
2pi

]}
×

m∑
i=1

∫ 1

−1
F [a1(·), . . . , ai−1(·),

√
m9i(v, ·)

+ai(·), ai+1(·), . . . , am(·)] dv + Rm(F ). (14)

For the functional integrals without weight, formula (14) can be applied by setting
pi = qi = 0 for all i = 1, . . . , m. Other approximation formulae and theorems on the
error estimate are given in [12, 13, 20].

3.4. Numerical examples

Let us consider the approximate calculation of the two-fold functional integral with
conditional Wiener measure

I =
∫
C2

0

exp

{ ∫ 1

0
(px2(t)+ qx(t)+ py2(t)+ qy(t)) dt

}
dWx dWy

using (11). The results forq = 5 and variousp, n1 andn2 are given in tables 1 and 2. The
(n1+n2)-fold Riemann integral in (11) can be evaluated explicitly in this case. We compute
the remaining single integral using the Thebyshev quadrature. The computations took about
1 s on CDC-6500 computer. We useI ∗ to denote the exact value of the functional integral.
We found it by the substitution of functional variables given by the linear transformation
mapping the spaceC0 onto itself in one-to-one correspondence [13]. It is seen that the
good approximations are obtained with the small dimensionsn1 andn2 and that the results
converge to exact value asn1, n2 → ∞.
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Table 1. Values of the two-fold functional integral forp = 0.5. I ∗ = 12.033 906 88.

n1; n2 1 2 3 5 10

1 12.033 2950
2 12.034 2440 12.033 8116
3 12.039 5110 12.035 6295 12.033 9518
5 12.042 3562 12.037 4153 12.034 2150 12.033 9122
10 12.044 7756 12.039 0693 12.034 7689 12.034 0572 12.033 9069

Table 2. Values of the two-fold functional integral forp = −0.5. I ∗ = 5.655 919 950.

n1; n2 1 2 3 5 10

1 5.653 388 31
2 5.654 722 54 5.655 150 20
3 5.654 654 95 5.655 575 58 5.655 732 96
5 5.654 876 46 5.655 542 52 5.655 838 32 5.655 872 19
10 5.655 136 82 5.655 532 13 5.655 975 14 5.655 932 99 5.655 912 93

Let us now consider the computation of functional integrals characterizing the quantum
system described by the Hamiltonian operatorH = − 1

21+ V with the potential

V (x) = 1
2(x

2 − x2
0)

2 x ∈ (−∞,∞)

which has minima at±x0. This double-well system is of interest because it provides the
convenient framework for studying the tunnelling and instanton effects. The properties
of this system are used in studying ferroelectrics, semiconductors, and so on. Owing to
tunnelling, the ground-state wavefunction is an even superposition of the wavefunctions of
each well. The main effect is the splitting of the energy levels (which are doubly degenerate
if tunnelling is neglected). The method of functional integrals is a convenient technique
for studying tunnelling effects [22]. Our results of computation of the ground stateE0

obtained using the approximation formula (8) are presented in table 3 for the different
values of the strength of potential barrierx0 and for various parametersn andm. The
computations took few seconds per pointx0. E∗

0 are exact results taken from [23]. For
comparison we cite the resultsEst0 of [7] obtained by the use of ‘short-time’ propagator
with dimensionN and k iterations. The CPU time in this work is reported to be rather
large although less than in Monte Carlo computations.Eit0 denotes the result of [9] obtained
by an iterative matrix multiplication method. Since the results of other authors are given
in a graphic form, we compare them with our results of computation ofE0 and of the
splitting of levels4E obtained withn = m = 1 in figure 1. In [24] the ground-state
energy has been obtained by evaluation of the lattice (discretized) path integral via Monte
Carlo simulations. The results of [25] are reported to be obtained evaluating theN -fold
integral via averaging over 10 Monte Carlo iterations on the lattice withN = 303 points
and spacingε = 0.25. It is seen that our functional deterministic method gives better results
while requiring essentially less computer time and memory versus other numerical methods,
both stochastic and deterministic, used by the other authors.
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Table 3. Comparison of results for the system with a double-well potential.

E0/E
∗
0 (this work) Est0 /E

∗
0 [7]

x2
0 n = m = 1 n = 1, m = 2 n = 2, m = 1 k N = 17 N = 33 Eit0 /E

∗
0 [9]

0 1.0008 1.0002 1.0001 — — —

5 0.9852 0.9725
1 1.0016 1.0004 1.0003 10 0.9949 0.9996 —

15 0.9949 0.9996

5 0.9158 0.8399
2 0.9982 1.0007 0.9994 10 0.9537 0.9919 0.9856

15 0.9550 0.9967

Figure 1. Ground-state energy of the double well.

Figure 2. Difference of energies of the ground
and the first excited states of the double well.

4. Application to the quantum many-body systems

4.1. Many-body Calogero model

Let us consider first some pedagogical example for which the exact solution is known,
namely the Calogero model which is characterized by the following Hamiltonian operator

H = −
n∑
k=1

∂2

∂x2
k

+ 1
2ω

2
n∑
i<j

(xi − xj )
2 + g

n∑
i<j

(xi − xj )
−2. (15)
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Table 4. Ground-state energy of the Calogero model forn = 3, g = 1.5.

ω E0 (this work) Emc0 [26] E∗
0

0.10 1.346 — 1.3472
0.20 2.700 — 2.6944
0.25 3.366 3.35± 0.004 3.3680
0.50 6.738 — 6.7361

Table 5. Ground-state energy of the Calogero model forω = 0.25, g = 1.5.

n E0 (this work) Emc0 [26] E∗
0

5 13.447 13.37± 0.04 13.4397
7 32.249 32.34± 0.09 32.2718
9 61.473 61.31± 0.10 61.5183

11 102.865 102.31± 0.14 102.6028

This model corresponds to the system ofn particles which interact via centrifugal repulsion
and linear attraction forces with the coupling constantsg andω respectively. It was studied
by many authors (see, e.g. [26]), which used the Monte Carlo method. We computed the
statistical sum (partition function)Z and the ground-state energyE0 for this model using our
approximation method for functional integrals. The results for three particles and various
values of the constantω are listed in table 4, whereas those for the fixedω and various
numbers of particlesn are given in table 5. The CPU time of computation ofE0 was 11 s
per pointω for n = 3. For comparison we cite the resultsEmc0 obtained by the Monte Carlo
method [26] using 1000 points of time discretization and 100 iterations. The exact values
are denoted byE∗

0. The CPU time of our computation ofE0 for n = 11 was about 3 min
on CDC-6500, whereas the computation ofEmc0 required as long as 15 min on the same
computer [26]. It is seen from the tables that our deterministic method gives better results
than those obtained by the Monte Carlo algorithm which did not even provide the agreement
of Emc0 with E∗

0 in the framework of the presented error estimates. So, as distinct from
the other deterministic techniques of computation of path integrals, our functional method
works well also in a study of quantum systems with many degrees of freedom, i.e. in a
multidimensional case, and ensures the higher efficiency of computations versus traditional
stochastic methods.

4.2. Nuclear potential models

4.2.1. The triton problem. Let us now consider the numerical investigation of interaction
of particles (nucleons) in the nucleus of tritium. This three-body problem is of the real
interest in physics (see [6, 27]). The Hamiltonian describing this system is the following:

H =
3∑
i=1

h̄2

2mi

∂2

∂x2
i

+
∑
i<j

V (|rij |). (16)

Herexi = (x
(1)
i , x

(2)
i , x

(3)
i ), i = 1, 2, 3 denote the coordinates of the particle with the mass

mi and

rij = xi − xj .
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As shown in [27], various types of interaction potentials yield different values of the binding
energy and even for the same potential the different methods of calculation give different
binding energies.

We have studied the following model of triton used by the various authors:

V (r) = −51.5 exp

{
− r

2

b2

}
MeV b = 1.6F (17)

m1 = m2 = m3 = mp, wheremp = 938.279 MeV is the proton mass. The following values
of the ground-state energy have been obtained in this model by means of variationalEv and
Monte CarloEmc methods (see [6, 26] and the references therein):

Emc = −9.77± 0.06 MeV

Ev = −9.42 MeV

Ev = −9.47± 0.4 MeV

−9.99± 0.05 MeV< Ev < −9.75± 0.04 MeV

Ev = −9.78 MeV.

It is seen, that the difference between these results is larger than the presented error estimates.
Therefore, the solution of this problem by some other method is of interest for obtaining a
more precise result.

We consider the problem (16)–(17) in the framework of the functional integral approach.
We compute the partition function (the nine-fold functional integral) using our numerical
technique. The computations have been performed with the relative accuracyε = 0.01. Our
resultE = −9.7 MeV agrees well with the data of other authors. TheCPU time was about
15 min, which is less than the times reported in the other known works. It is desirable,
however, to take into account the three-nucleon force as well as the more realistic potentials
like Argonnev14 and the Paris ones [27] which would make a subject of our future work.

4.2.2. One-dimensional nuclear model.We have studied the one-dimensional nuclear
model proposed in [16] with the parameters chosen so that to conform to the three-
dimensional case:

V (x) =
2∑
k=1

Vk

σk
√
π

exp

{
− x

2

σ 2
k

}
V1 = 12 V2 = −12 σ1 = 0.2 σ2 = 0.8 h̄ = m = 1

(18)

in units of lengthl0 = 1.89 Fm and energyE0 = h̄2/(ml20) = 11.6 MeV. Applying our
numerical method in the case of antisymmetrized states in accordance with (6) and using
the approximation formula of the third total degree of accuracy for the multiple functional
integrals, we have:

Z(x,x, β) ' (2πβ)−A/2
1

2n

A∑
i=1

∫ 1

−1
exp

{
− β

∫ 1

0
F

[
x1, x2, . . . , xi−1,

√
Aβρ(v, t)

+xi, xi+1, . . . , xA

]
dt

}
×�

[
x1, x2, . . . , xi−1,

√
Aβρ(v, ·)+ xi, xi+1, . . . , xA

]
dv (19)
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where

F [x1, . . . , xA] =
∑
i>j

V (|xi − xj |) ρ(v, t) =
{

−t sign(v) t 6 |v|
(1 − t) sign(v) t > |v|

�[x1, . . . , xA] =
{

1 x1(t) < x2(t) < . . . < xA(t), t ∈ [0, 1]

0 otherwise.

Functional�[x1, . . . , xA] is introduced to define the integration domain in the spaceCA0 . It
imposes the conditions on the minimal and maximal values of the integration variablev in
dependence on the given set ofx1, x2, . . . , xA. We compute the Riemannian integrals using
the Gaussian quadrature with the relative accuracy 0.01.

4.2.3. The 2N system.For the system of two nucleons (deuteron) our result of computation
of the binding energy isEd = 2.24 MeV which can be compared with the experimental data
Eex = 2.2 MeV, with the prediction of the semi-empirical formula [28]Ese = 3.5 MeV
and with the valueE = 2.243 MeV obtained in [7]. Our results can be considered as
satisfactory and it provides the basis for study of the more realistic types of interaction.

4.2.4. The 4N system.For the system of four nucleons (α-particle) we computed the
binding energy with resultEF = 27.6 MeV which is close to the experimental value
Eex = 28.3 MeV [5]. The prediction of the semi-empirical formula isEse = 18.8 MeV.
We compare our results with those obtained in [16] by means of the lattice Monte Carlo
simulations in the framework of the same model. Since the results of [16] are given in a
graphical form, we reproduce them in figure 3. It shows the binding energy of four particles
in the dimensionless unitsE/E0, whereE0 = h̄2/(ml20) = 11.6 MeV, as a function of the
lattice spacingε, obtained in [16] by simulation of 104 events. ET andEN denote the
trial energy and the normalization energy respectively, andEM are the values obtained by
the Metropolis algorithm [16]. The problem of extrapolation of results to the continuum
limit (ε → 0) has been discussed in [16] and [17] and found to be not simple enough. In
contrast, in our approach we do not have such problems since we do not introduce the lattice
discretization and consider the quantities directly in continuum limit. Our functional-integral
resultEF/E0 is shown in figure 3 at the pointε = 0.

Figure 3. Binding energy of the four-particle
bound state.



6668 Yu Yu Lobanov

5. Conclusion

The described method of computation of functional integrals based on a rigorous definition
of measure in metric spaces has important advantages over conventional Monte Carlo
simulation method. The employment of this approach replaces the evaluation of functional
integrals by computation of the ordinary ones of a low dimension thus allowing us to use the
more preferable deterministic algorithms and provides significant economy of computer time
and memory. This approach is very useful when other methods (perturbative, semiclassical
approximation, etc) cannot be applied. Our method works effectively also in a case of high
dimensions where other deterministic methods of numerical path integration as well as finite-
difference methods usually fail. Moreover, it is of no importance for implementation of this
method whether the interaction is pairwise or multiparticle, the functionV (x) can depend
on its componentsx1, . . . , xm arbitrarily, because there is no need to reverse densely filled
high-order matrices. The advantages mentioned above prove this method to be a promising
tool for solving the many-body problems. We have found this approach to be convenient
for study of the complicated quantum systems [29]. Further work in this area is in progress.
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