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Abstract. The new method for computation of the physical characteristics of quantum systems
with many degrees of freedom is described. This method is based on the representation of
the matrix element of the evolution operator in Euclidean metrics in a form of the functional
integral with a certain measure in the corresponding space and on the use of approximation
formulae which we constructed for this kind of integral. The method does not require preliminary
discretization of space and time and allows us to use the deterministic algorithms. This approach
proved to have important advantages over the other known methods, including the higher
efficiency of computations. Examples of application of the method to the numerical study
of some potential nuclear models as well as comparison of results with the experimental data
and with the values obtained by the other authors are presented.

1. Introduction

Investigation of quantum systems consisting of many interacting particles is one of
the fundamental problems in physics [1]. The convenient framework for study of the
systems with many degrees of freedom is a path-integral approach [2]. Being one of
the most important mathematical techniques for solution of the wide class of problems in
computational physics [3], path integrals provide a useful tool for study of the variety
of nuclear systems which are otherwise not amenable to definitive analysis through
perturbative, variational or stationary-phase approximations, etc (see [4]). However, the
existing approaches to path integrals in physics are not always correct in a mathematical
sense and the usual method of their computation is Monte Carlo, which gives the results
only as probabilistic averages and requires too much computer resources to obtain the good
statistics. Moreover, when the nuclear many-body problem is being formulated on a lattice,
the computation of characteristics of heavy nucleus would require the lattice size which
is four to five orders of magnitude more than any lattice gauge calculation and which is
hardly possible on any foreseeable computer [4]. First of all it concerns the ground state
properties (binding energies, masses, etc). The existing results of computation of the binding
energy even for the light nuclei by means of the variational or Green function Monte Carlo
method, as well as by the coupled cluster and Faddeev equation methods, differ one from
the other and from the experimental values more than the estimated errors of calculation
(see [5, 6]), while requiring several hours on Cray—-YMP and Cray-2 computers [5]. It is
clear that the creation of the new methods for solution of such a complicated problem is
of high importance. Increasing attention is being paid nowadays to the construction of
deterministic algorithms for computation of path integrals which would be more effective
than conventional Monte Carlo (see [7-9]). For instance, in [7] the authors discuss the
method of path summation based on the introduction of the ‘short-time’ propagator in the
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range O< ¢ < &, which is correct up to @2) and on the successive iterations to the finite
imaginary timer to obtain the ground-state energy of a quantum system. It should be noted
that the main physical properties such as energy spectrum, wavefunctions squared, etc can
be reproduced correctly only in a limit— oco. In [8] and in extending its results to [9] the
method of evaluation of discretized path integrals is developed on the basis of iteration of the
short-time approximation and on the direct matrix multiplication. The authors state that this
approach is more along the original lines of Feynman of integrating over all space at each
intermediate time rather than accepting or rejecting paths according to a Markov process in
Monte Carlo algorithms. However, their method also assumes the preliminary discretization
and it can be applied to the systems with only a few quantum degrees of freedom. It is also
limited by the size of the matrix that can be handled on existing computers (see [8]). It means
that using this approach it is difficult to treat problems in which the system is delocalized
over large distances. The method reported in [8] and [9] contains several parameters which
affect the accuracy of results. The choice of these parameters is not clear and sometimes the
decrease of spacing (which corresponds to approaching the continuum limit) gives worse
result and requires more iterations to improve it (see [9]).

According to the recent achievements in the measure theory and in the development
of functional integration methods (see, e.g. [10]) as well as in the functional methods
in quantum physics [11] one can create the mathematically well-grounded methods for
computation of path integrals. One of the promising approaches is the construction of
approximation formulae which are exact on a given class of functionals [10]. Based on
the rigorous definition of a functional integral in complete separable metric space in the
framework of this approach we elaborated the new numerical method of computation of
path integrals [12]. This method does not require preliminary discretization of space and
time and allows us to obtain the mathematically well-grounded physical results with a
guaranteed (not probabilistic) error estimate. It permits the straightforward computation
of functional integrals over all space without any simplifying assumption (perturbation
expansion, semiclassical or short-time approximation, etc). Our approximation formulae
can be interpreted as quadratures in functional spaces. They are exact on a class of
polynomial functionals of a given degree. Our method contains, therefore, all advantages
of deterministic approach and is free from the limitations of other methods mentioned
above. Under determined conditions we have proved the convergence of approximations to
the exact value of the integral and estimated the remainder which gives upper and lower
bounds of the result. We have studied in detail the functional measure of the Gaussian
type and some of its important particular cases such as conditional Wiener measure in the
space of continuous functions [13] in Euclidean quantum mechanics (or quantum statistical
mechanics) and the functional measure in a Schwartz distribution space in two-dimensional
Euclidean quantum field theory [14]. Numerical computations show [14] that our method
gives significant (by an order of magnitude) economy of computer time and memory versus
conventional Monte Carlo method used by other authors in the problems which we have
considered. This approach is also proven to have advantages in the case of high dimensions
when the other deterministic methods loose their efficiency [15]. Our deterministic algorithm
of computation of functional integrals which we use in quantum statistical physics instead
of traditional stochastic methods enable us to make a constructive proof of existence of
continuum limit of the lattice (discretized) path integrals and to compute the physical
guantities in this limit within the determined error bars. Using this method we performed the
numerical investigation of the topological susceptibility and computedtcua energy in
continuum for the first time [14]. Our algorithm realized in a program written in FORTRAN
has been implemented on CDC-6500 and Convex C220 computers. However, it is also
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possible to use personal computers since the method does not require too much computer
resources. The source of the program is available from the author upon request.

In the present paper we discuss the mathematical foundations of the method and its
numerical aspects. We extend it to the case of fermions (i.e. the antisymmetrized states) in
continuum limit and apply it to the study of some potential nuclear models. The comparison
of our numerical results with the experimental data and with the values obtained by the
other authors which used both probabilistic and deterministic techniques demonstrates the
advantages of our method.

2. Mathematical foundations

The most important for applications are integrals with respect to a measure of the Gaussian
type [11]. It contains various types of measures including the well known conditional
Wiener measure. So, we consider the Lebesgue integral

/ F[x]du(x) (1)
X

where F[x] is an arbitrary real measurable functional on a complete separable metric space

X. Gaussian measupe on X is a normalized measure defined on Barehlgebra of the

spaceX in the following way [10]. The value of this measure on an arbitrary cylinder set
le...%(An) ={xeX: [(‘PLX), (@2, %), ..., (@nvx” € Ayl

whereg; . .. ¢, are the linear-independent elements of the spdcandA, (n =1,2,...)
are arbitrary Borel manifolds i®", is given by the formula

1{ Qg g, (A} = (2)"?(detk )2 / exp(—3 (K u — M(@)], [u — M(p)])} du.

An

HereK; ; = K(¢;, ), u = (U, uz, ..., Uy),

M(p) = {M(p1), M(g2), ..., M(pn)}

(K™Mu—M@)]. [u— M@ =D K Hur — Mg)]lu; — M(g))]

ij=1

K (¢, ) is a correlation functional of the measur#,(¢) is a mean value [10]. Under
certain conditions, functional& (¢, ¥) and M(¢), ¢, ¥ € X' determine the countable-
additive function of manifolds on a Borel-algebra of the spac¥.

In the particular case of conditional Wiener measuye: dn the spaceCy of continuous
functionsCo = {x(¢) € C[0, 1], x(0) = x(1) = 0} we have

1
(@, x) :/o x(t) do(1)
and
1 1
K. y) = /C (9. 2) (Y. x) dyx = fo /0 K(t. 5) do(r) d s)
where
lC(t,s):/ x(H)x(s) dyx.
Co

Conditional Wiener measure is characterized by the following correlation function and mean
value [10]:

K@t,s) =min{t, s} —ts M(p) =0. (2)



6656 Yu Yu Lobanov

According to the Feynman—Kac formula, matrix elemefik(8) of the evolution
operator exp—gSH}, whereH = —%A + V is written as follows:

Zir(B) = Z(xi, x7, B) = (xs1€PH |x;)

B
:/ exp{ —/ V[x(t)]dt}dwx. ©))
C 0

iy p
The integration in (3) is performed over the manifold of continuous functignse C[O, S]

with conditionsx(0) = x;, x(8) = xy. It should be noted that as distinct from the
conventional path-integral approach, integral (3) does not contain the kinetic term (the
first derivative squared) since it is included now to the measure of integration, and this
circumstance simplifies the numerical simulations. After the appropriate change of the
functional variables we can rewrite the integral (3) with the periodic boundary conditions
x; = xy = x in the form of standard conditional Wiener integral in the spége

1
Z(x,x,B) = (27713)_1/2/ EXIO{ —ﬂ/ VIV/B x(t)+x]dt}dWX- 4)
Co 0

Using (4) we can compute various quantities in Euclidean quantum mechanics (or in
guantum statistical mechanics accordingly). Particularly, the free energy of the system
is defined as follows:

1
f(B) = 3 InZ(B)

where

[ee]

Z(B) =Trexp{—BH} = / Z(x,x, B)dx.

The ground state energy can be obtained in the following way:
Eo = (0|H|0) = ﬁ'ﬂ’)noof(ﬁ)-

We can also define the propagator
G(1) = (OIx(0)x(7)[0) = ﬁ"_[nool“(f)

where the correlation function

1 1 oo 1
r@ = O = o [ [ ex { 8 [ VIV +x dt}
V2B 7B | Jo, TP TP Jy VIO 4
X |:\/Ex (;) + x] x Oy x dx.
The energy gap between the ground and the first excited states can be computed as follows:

_d
AE=Ei—Eo=~lim —InG().

t—o00 AT

The ground state wavefunction is equal to
|Wo(x)[* = lim [exp({EoB}Z (x. %, )]

The generalization of (3) to the case of higher dimensions is obvious.

When studying the nuclear many-body problems, one needs the representation
for the many-fermion evolution operator. A number of alternative functional
integral representations exist for the many-fermion systems, including the many-particle
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generalization of the path integral, an integral over an auxiliary field, integrals over the
overcomplete sets of boson coherent states, determinants and Grassman variables (see [16]).
Following the idea proposed in [16], in our present work we used the method based on
insertion of a complete set of antisymmetrized many-particle states..x,) (A is the

number of particles) at each time step of the discretized segmgf}. [Bs shown in [16],

for the infinitesimal times

1 A
(g oxhle Tty = exp{ ~ % E (! — xrh?
i=1

x det

eXp{ —2—18[(x;' —x 2 = (o =X H] } ‘
x exp{ — ZZ[V(Ix,-”‘l — x4 V(x] — x;m}
i,J

where the superscripts denote time labels and the subscripts denote particle,
x!' = x;(t,) t, = ¢€n i=1..., A

The sign of the matrix element at each step arising from the determinant is just the sign
of the permutation required to bring th¢ into the same order as the¢—1. Hence the
cummulative sign after any number of steps is path-independent and is the sign of the
permutation required to make the final order equal to the initial order [16]. It does not
affect matrix elements of the evolution operator with antisymmetrized states or the trace of
the evolution operator times a symmetric operator (see [16]). As reported in [4], in more
than one spatial dimension, the interface between positive and negative contributions to the
functional integral degrades the statistical accuracy such that the very good trial functions
and exceedingly large ensembles are required to obtain useful results (it seems, however,
that in our deterministic approach no such problems would arise). In one dimension the
antisymmetry completely specifies the nodal points and a positive definite result may be
obtained evolving the wavefunction in the ordered subspace x, < x3 < --- < x4 [4].

In this domain the determinant may be replaced by the following product in thedimnitO

[16]:

exp{—zlg[(x? —xH? = (=2 H] H

A
N l—[ <1 — exp{—l(x,-” ) [CAE x,-"__ll)}>
i3 2¢

so that the matrix elemer#(x, x, ) can be written as follows [17, 4]:

det

Z(x7x9ﬁ):!ii>nozs(x1x713) SZN

where
Z.(x,x,B) = (Zns)fNA/Z/Pg(x%,...,xiv,...,x}‘,...,xﬁ')dx%...dxév

P, =exp] — — (' —=xI')
REPDNEEES

i=1 n=1

N
x exp{ - g DN VA — XD+ V(= x,'?‘ﬂ)]}

n=1i>j
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N A
X 1_[ l_[ [1 — exp{—21 (xf — X ) = h }i| . (5)
n=1i=2 £
Some results on construction of the positive-definite functional integral representation for
the fermions in dimensiong > 2 are reported in paper [18].
We can make a straightforward passage to the continuum limit in (5). Namely, we have
found, that where — 0 (or N — o0), B fixed, Z.(x, x, B) — Z(x, x, B), where

1
Z(x.x, p) = (2up)~ 2 /C exp{ B Zfo VIG/ i) + xi)

i>j

—(\/BXj(t)+/Y_j)]dt}dij_...dWxA. (6)
Here 65‘ is a subset of the spacg which is the direct multiplication ofA copies of the
spaceCy defined aboveﬁ{,* consists of the sequences of elements), xo(1), ..., xa(1),
xi€Co,i=12,...,A such that
VBxis1(t) + xip1 > /Bxi(t) + xi for r € [0, B] i=12...,A—-1

This expression is obtained on the basis of the definition of conditional Wiener integral given
in [19]. It is essential that the double product in (5) tends to the unity in the continuum
limit ¢ — 0.

3. Outline of the numerical method

3.1. Composite approximation formulae

When performing the computations for quantum systems with many degrees of freedom
one has to evaluate multiple functional integrals

f .. f Flx1, ..., x,]du(xy) ... du(x,) = / Flx]du™ (x). )

m

The main problem is to reduce the integral over an abstract sfaiesome expression
suitable for computations. It is clear that according to (7) we can consider the multiple
functional integral as a single one over the multiplication of spatés For the functional
integrals with an abstract Gaussian measure in complete separable metric spaces we derived
some expressions which can be used for the numerical evaluation of these integrals
[12]. Substituting the parameters of the measure (2) into these expressions we obtain the
approximations for conditional Wiener integrals used in quantum mechanics. Particularly,
the approximation formula which we call ‘composite’ looks as follows:

/F[x]dwx:(Zn)_”/Z/ exp(—5@u, u)}2™"
Co n

1 1
x / f F[p"™ @, ) = ™ (v, ) + Uy, (u, )] dv du + R™ (F) (8)
-1 -1

where

m

(v, 1) =Y " v, 1)

k=1
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—t sign(v) ]

pl. D) = { 1—1)signy) 1> |v]

n 2 m .
AN, =Y o Sin(k) > ™ sign(v;) costkmrvy)
=1 =1
~ V2
U,(u,t) = Z poLl sin(kmt)

k=1

[c!™]? are the roots 0, (z) = Yi,(—1)*z"*/k!, z € R and R (F) is the remainder
term.

Formula (8) replaces the evaluation of a functional integral by the computation of an
n + m-fold Riemann integral, where andm are arbitrary natural parameters. This formula
is exact (i.e. in this casR(™ (F) = 0) for any functional multinomial of degre€ 2m + 1.
Note that the functional of the form

Pulx] = 3 pulv]
k=0

where p;[x] is a homogeneous form dfth order continuous orX, is called a functional
multinomial of degreen. We proved the convergence of approximations (8) to the exact
value of the integral and estimated the remain®éf’(F) in dependence on andm. It

turns out that it is not necessary to approach the limits co andm — oo simultaneously

to ensure the convergence. Particularly, the order of convergence of (8-oro, m fixed

is O(n~*V). Practical computations show (some examples will be given below) that the
good accuracy (equal or better than 0.1%) can be achieved by choosing small vatues of
andm, even equal to unity. It allows us to use the more preferable deterministic algorithms
in computations instead of stochastic (Monte Carlo) methods. Usually we employ Gaussian
or Tchebyshev quadratures to evaluate low-dimensional Riemann integrals when computing
functional integrals by our approximation formulae.

3.2. Approximation formulae with the weight

Since the functionals of the typE[x] = exp{foﬁ V[x(¢)]dr} often appear in applications,
in many cases it is convenient to use the approximation formulae with exponential weight.
For conditional Wiener integrals

I= /CO P[x]F[x]dwx

with the weight functional

1
P[x] = exn{ /0 [p()x2(t) + q(O)x(1)] dt} p),q(t) € C[O, 1]

we obtained the approximation formula of the 2 1 order of accuracy (i.e. exact for every
functional multinomial of degree: 2m +1). This formula (we call it ‘elementary’) replaces

the functional integral by the:-fold Riemann one. More precise approximations for the
large class of functionals can be achieved by the use of the ‘composite’ formulae containing
the (n + m)-fold Riemann integrals (even far= 1). Combining these two approaches, we
derived the composite approximation formula for the conditional Wiener integrals with the
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considered weight:

1
I=(2n)"/2[W(1)]1/Zexp{/ L?(t) dt}/ exp(—3(u, u)}2™"
0

n

1 1
x/ / O™ (v, ) — A (v, ) + Uy (u, )] dv du + R (F). )
-1 -1

This formula is exact for every polynomial functional of degre@m + 1. Here
®[x] = F[Ax + d]
Ax(t) =x() - = /1B< YW (s)x(s)d
X =X —_ — N §)x(s)ds
W) Jo
1
W) = exp{ / a1- S)B(s)ds}
0

a(t) = / L(s)ds — % B(S)W(S)[/: L(u) dui| ds

1 1—
L) = / [Bs)W(s) H(s) —q(s)lds  H(t) = / g() = ds
0 ] W(s)
and B(s) is the solution of differential equation
(1—s)B'(s) — (L —5)B(s) — 3B(s) = 2p(s) s €]0,1] (10)
with initial condition
B(1) = _g p(D).

Note that in particular casg(r) = p = constantg(r) = g = constant the Riccati equation
(10) can be solved explicitly and the approximation formula (9) aquires the significant
simplification.

The remainder of the formula can be estimated as follows:

IRI™(F)| < Da™ &, + <2m)'"+1nm]

nm+l

where

D =[W(@D]V? exp{% /1L2(I)dt}
0
a=1+w+2J/w w= f (\/Tpcos\/»—sm\/Tv) ( 52/2[)

&, andn,, are positive constants dependentomand on the functionak [13]. Particularly,
it follows from this estimate that the convergence of approximations obtained according to
(9) for n — oo, m fixed has the order @~ "+V).

3.3. Approximations with the total order of accuracy

It turns out that it is more economical to use approximation formulae possessing a given
total order of accuracy oX™ to calculate then-fold functional integral [20]. In the case
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of conditional Wiener measure the composite formula of the third-order accuracy has the
form

/ Flx]dyx = (27'[)*N/2f exp{ 1 u®, (,))}
cr E
xi Z/ F(U,,(u®), ..., VmEi(p, ), u?),
miz1JR

i

U, (u™)) dudv 4+ Ry (F) (11)
where
—t sign(v) t < |v| u
1) = . N = i
p.1) [(1—t)3|gn(v) t > |v| ;n

(o, 1), u?) = p(v,1) = Sy, (p(v, 1)) + U, (u™)

Sni(p(v, 1)) = 22 ;T sin(jrt) sign(v) cosjmv)

jf

0, (u®) = ﬁZM” —sin(j) foralli=12...,m

We compute the multidimensional Riemann integrals which appear in (11), using the
Korobov method.
For them-fold conditional Wiener integrals with the weight functional

m 1
Plx, ..., xn] = exp{ Z/O [pi (1) x2(1) + i (1) x: (1)] dt}
i=1

we derived the following approximation formula:

m el
/ P[xl,...,xm]F[xl,...,xm]dﬁ,?)x _exp{ %Z/ (l—s)B,~(s)ds}(2m)_l
ot 0

i=1
m 1 m 1
xexp{;Zfo L2(1) dt}Z/lF[al(-), i1 (), /MY (v, )
i=1 i=1v"
+a;(-), ai410), ., an ()] dv + Ry (F) (12)

where B; (s) is the solution of the differential equation
(1—5) B/(s) — (1 — 5)>B?(s) — 3B;(s) — 2pi(s) =0 s €[0,1]

13
Bi(1) = —3pi(D) 49

and

1
Yi, ) = fi(v,) —o(v,) Wi(t) = exp{/ 1- S)Bi(s)ds}
0

1—¢ min{|v|,z}
fi(v, 1) = sign(v) [1 + / Bi(s)W;(s) ds
0

Wi ()
bigg]

t 1— t t N
(1) = . B: : L:
a; (1) /0 i Wi fo i ()W (s) /0 i (u) O ds
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Li(t) = / [Bi($)W;(s)K;(s) — gqi(s)]ds + ¢
0

& omn— {sngn(v) t < vl

1 1-
Ki(s) = / qi(u)

W() 0 t > |v|

and the constantg are determined by the conditiqfal Li(s)ds =0

Approximation formula (12) is exact wheR[x] is arbitrary polynomial functional of
the third total degree ogd’y’. We compute the Riemann integral in (12) using Gaussian or
Tchebyshev quadratures with the relative accuracy 0.01.

In the particular case; (r) = p; = constant the solution of the Riccati equation (13) is
the following:

Bi(s) = {\/ZT%Ctg [\/2791(1— S)]

If we set alsog; (1) = g; = constant, them; (z) can be expressed explicitly

-1
a;(t) = g; [picos\/ipi} sin( 2P t)sin< ipi(l—t)>

and the approximation formula (12) acquires the form

2p; :
Plxt, o, Xl Flx1, .oy x]dx = 2m) 1 ! )
fg, et il Pl ] A8 = (2m) H(SIV

Ny2p;
2
4q; 1 1
<o| s [0 |

m 1
X Z/ Flar(), ..., a1 (), VYm¥;(v, )
=1/-1

+ai (), ai+1(), -« o, am ()] dv + Ry (F). (14)
For the functional integrals without weight, formula (14) can be applied by setting
pi =q; =0foralli =1,...,m. Other approximation formulae and theorems on the

error estimate are given in [12,13, 20].

3.4. Numerical examples

Let us consider the approximate calculation of the two-fold functional integral with
conditional Wiener measure

1
1= / exp{ /O (pxzm+qx<r>+py2(t>+qy(r>)dr}dwx dwy
3

using (11). The results fay = 5 and variousp, n1 andn, are given in tables 1 and 2. The
(n1+n2)-fold Riemann integral in (11) can be evaluated explicitly in this case. We compute
the remaining single integral using the Thebyshev quadrature. The computations took about
1 s on CDC-6500 computer. We ugeto denote the exact value of the functional integral.

We found it by the substitution of functional variables given by the linear transformation
mapping the spac€j, onto itself in one-to-one correspondence [13]. It is seen that the
good approximations are obtained with the small dimensigrand», and that the results
converge to exact value as, ny — oo.
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Table 1. Values of the two-fold functional integral fggp = 0.5. 7* = 12.033 906 88.

ni;ny 1 2 3 5 10

1 12.033 2950

2 12.0342440 12.0338116

3 12.0395110 12.0356295 12.0339518

5 12.0423562 12.0374153 12.0342150 12.0339122

10 12.0447756 12.0390693 12.0347689 12.0340572 12.0339069

Table 2. Values of the two-fold functional integral fg5 = —0.5. I* = 5.655919 950.

ny;ng 1 2 3 5 10

1 5.65338831

2 5.65472254 5.65515020

3 5.65465495 5.65557558 5.65573296

5 5.65487646 5.65554252 5.65583832 5.65587219

10 5.65513682 5.65553213 5.65597514 5.65593299 5.65591293

Let us now consider the computation of functional integrals characterizing the quantum
system described by the Hamiltonian operatbe= —%A + V with the potential

V(x) = 3(x* = x§)? x € (—00, 00)

which has minima attxy. This double-well system is of interest because it provides the
convenient framework for studying the tunnelling and instanton effects. The properties
of this system are used in studying ferroelectrics, semiconductors, and so on. Owing to
tunnelling, the ground-state wavefunction is an even superposition of the wavefunctions of
each well. The main effect is the splitting of the energy levels (which are doubly degenerate
if tunnelling is neglected). The method of functional integrals is a convenient technique
for studying tunnelling effects [22]. Our results of computation of the ground digte
obtained using the approximation formula (8) are presented in table 3 for the different
values of the strength of potential barrieg and for various parametess and m. The
computations took few seconds per poigt Ej are exact results taken from [23]. For
comparison we cite the resulis)’ of [7] obtained by the use of ‘short-time’ propagator
with dimensionN and k iterations. The CPU time in this work is reported to be rather
large although less than in Monte Carlo computatiafi§.denotes the result of [9] obtained

by an iterative matrix multiplication method. Since the results of other authors are given
in a graphic form, we compare them with our results of computatiorE@fand of the
splitting of levels AE obtained withn = m = 1 in figure 1. In [24] the ground-state
energy has been obtained by evaluation of the lattice (discretized) path integral via Monte
Carlo simulations. The results of [25] are reported to be obtained evaluatiny -fioéd
integral via averaging over 10 Monte Carlo iterations on the lattice with= 303 points

and spacing = 0.25. Itis seen that our functional deterministic method gives better results
while requiring essentially less computer time and memory versus other numerical methods,
both stochastic and deterministic, used by the other authors.
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Table 3. Comparison of results for the system with a double-well potential.

Eo/E} (this work) EY/E§ [7]
¥ n=m=1 n=1lm=2 n=2m=1 k N=17 N=33 EY/E}[9]
0 1.0008 1.0002 1.0001 — — —
5  0.9852 0.9725
1 1.0016 1.0004 1.0003 10  0.9949 0.9996 —
15  0.9949 0.9996
5  0.9158 0.8399
2 0.9982 1.0007 0.9994 10  0.9537 0.9919 0.9856
15  0.9550 0.9967
2.5 T T T T m
E* (vef.[23]) —
E, (this work) <
2r EW (ref.[24]) + ]
Eme (ref [25)) O

0 0.5 1 15, 2 2.5 3
*o Figure 1. Ground-state energy of the double well.
T I T
AE* (ref.[23]) —
é AFE (this work) <&
AE™® (ref.[24]) +
1 ?\5\\ AE™ (ref[25]) O
AE() | T
0.1 F .
1 1 1 1 |
0 0.5 1 15, 2 2.5 3 Figure 2. Difference of energies of the ground
X0

and the first excited states of the double well.

4. Application to the quantum many-body systems
4.1. Many-body Calogero model

Let us consider first some pedagogical example for which the exact solution is known,
namely the Calogero model which is characterized by the following Hamiltonian operator

H:—Z +3 ZZ(x,—x,)2+gZ(xt—x/)2

= i<j i<j

(15)
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Table 4. Ground-state energy of the Calogero modelfce 3, g = 1.5.

w Ey (this work) ~ El° [26] E}
0.10 1.346 — 1.3472
0.20 2.700 — 2.6944
0.25 3.366 B/5+0004 3.3680
050 6.738 — 6.7361

Table 5. Ground-state energy of the Calogero modeldoz 0.25, g = 1.5.

n  Eo(this work) EZ° [26] E}
5 13.447 1374004  13.4397
7 32249 384+009  32.2718
9 61473 6131+ 0.10  61.5183

11  102.865 10314014 102.6028

This model corresponds to the systemgbarticles which interact via centrifugal repulsion
and linear attraction forces with the coupling constangndw respectively. It was studied

by many authors (see, e.g. [26]), which used the Monte Carlo method. We computed the
statistical sum (partition functioryy and the ground-state energy for this model using our
approximation method for functional integrals. The results for three particles and various
values of the constanb are listed in table 4, whereas those for the fixednd various
numbers of particles are given in table 5. The CPU time of computationfyf was 11 s

per pointw for n = 3. For comparison we cite the resulf§'“ obtained by the Monte Carlo
method [26] using 1000 points of time discretization and 100 iterations. The exact values
are denoted byEj. The CPU time of our computation @&y for n = 11 was about 3 min

on CDC-6500, whereas the computation Kf required as long as 15 min on the same
computer [26]. It is seen from the tables that our deterministic method gives better results
than those obtained by the Monte Carlo algorithm which did not even provide the agreement
of E¢ with Ej in the framework of the presented error estimates. So, as distinct from
the other deterministic techniques of computation of path integrals, our functional method
works well also in a study of quantum systems with many degrees of freedom, i.e. in a
multidimensional case, and ensures the higher efficiency of computations versus traditional
stochastic methods.

4.2. Nuclear potential models

4.2.1. The triton problem. Let us now consider the numerical investigation of interaction
of particles (nucleons) in the nucleus of tritium. This three-body problem is of the real
interest in physics (see [6, 27]). The Hamiltonian describing this system is the following:

R? 92
o 922 T 2 Vi (16)

i<j

H =

3
i=1

Herex; = (x”, x?, x?), i = 1,2, 3 denote the coordinates of the particle with the mass
m; and

rij =& — &;j.
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As shown in [27], various types of interaction potentials yield different values of the binding
energy and even for the same potential the different methods of calculation give different
binding energies.

We have studied the following model of triton used by the various authors:

2
V(r) = —515 exp{—zz} MeV b =16F (17)
mi = my = m3 = m,, wherem, = 938279 MeV is the proton mass. The following values
of the ground-state energy have been obtained in this model by means of variatjcanad
Monte CarloE,,. methods (see [6, 26] and the references therein):

Epe = —9.77+ 0.06 MeV

E, = —9.42 MeV

E, = —9.47+ 0.4 MeV

—9.99+ 0.05 MeV < E, < —9.75+ 0.04 MeV
E, = —9.78 MeV.

Itis seen, that the difference between these results is larger than the presented error estimates.
Therefore, the solution of this problem by some other method is of interest for obtaining a
more precise result.

We consider the problem (16)—(17) in the framework of the functional integral approach.
We compute the partition function (the nine-fold functional integral) using our numerical
technique. The computations have been performed with the relative aceura®y01. Our
resultE = —9.7 MeV agrees well with the data of other authors. TheU time was about
15 min, which is less than the times reported in the other known works. It is desirable,
however, to take into account the three-nucleon force as well as the more realistic potentials
like Argonnewvy4 and the Paris ones [27] which would make a subject of our future work.

4.2.2. One-dimensional nuclear modeM/e have studied the one-dimensional nuclear
model proposed in [16] with the parameters chosen so that to conform to the three-
dimensional case:

|4 —22:7‘/]‘ ex {_xz}
() = 7 P02 (18)

=1 Ok k
V1=12 V2=—12 0120.2 0220.8 ﬁ:m:l

in units of lengthly = 1.89 Fm and energyy = ;?/(ng) = 116 MeV. Applying our
numerical method in the case of antisymmetrized states in accordance with (6) and using
the approximation formula of the third total degree of accuracy for the multiple functional
integrals, we have:

a1l &
Z(z, x, B) = (27B) A/Z%;f

1 1
exp{ —/3/ F[xl, X2, ..., Xi—1,/ABp (v, t)
1 0

+Xis Xigls e - e XA:| dl}

x Q2 [xl, X2, .., Xi—1, VABP(, *) + Xi, Xix1, ... ,xA] dv (29)



Functional integrals for nuclear many-particle systems 6667

where
—1 sign(v) t < v
(1 — 1) sign(v) t > |v]

1 x1(t) < x2(t) < ... < x4(2),t €[0,1]
0 otherwise.

Flxi,...,xal =) Vi —x)  p,1)= {

i>j

Qx1,...,x4] =

FunctionalQ[x1, ..., x4] is introduced to define the integration domain in the spage It
imposes the conditions on the minimal and maximal values of the integration vaviéable
dependence on the given setxqf xo, ..., x4. We compute the Riemannian integrals using
the Gaussian quadrature with the relative accuracy 0.01.

4.2.3. The 2N system.For the system of two nucleons (deuteron) our result of computation
of the binding energy i€, = 2.24 MeV which can be compared with the experimental data
E., = 2.2 MeV, with the prediction of the semi-empirical formula [28], = 3.5 MeV

and with the valueE = 2.243 MeV obtained in [7]. Our results can be considered as
satisfactory and it provides the basis for study of the more realistic types of interaction.

4.2.4. The 4N system.For the system of four nucleons-particle) we computed the
binding energy with resulEr = 27.6 MeV which is close to the experimental value
E.. = 283 MeV [5]. The prediction of the semi-empirical formula &5, = 18.8 MeV.

We compare our results with those obtained in [16] by means of the lattice Monte Carlo
simulations in the framework of the same model. Since the results of [16] are given in a
graphical form, we reproduce them in figure 3. It shows the binding energy of four particles
in the dimensionless unitg/ Eg, where Eg = EZ/(ng) = 116 MeV, as a function of the
lattice spacinge, obtained in [16] by simulation of fOevents. E; and Ey denote the

trial energy and the normalization energy respectively, Bpdare the values obtained by
the Metropolis algorithm [16]. The problem of extrapolation of results to the continuum
limit (¢ — 0) has been discussed in [16] and [17] and found to be not simple enough. In
contrast, in our approach we do not have such problems since we do not introduce the lattice
discretization and consider the quantities directly in continuum limit. Our functional-integral
result Er/Eq is shown in figure 3 at the poinrt= 0.

I T
61 Er (this work) <
5.5 Er (ref.[16]) + A
. En (rcf.[lﬁ]) =
5T Ey (ref[16]) x |
45 | il
EJE, A il §
35 F 7
3+ % i
X+
T ]
2+ i
1.5 ‘ ! L L
0 0.05 0.1 0.15 0.2 0.25  Figure 3. Binding energy of the four-particle

€ bound state.
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5. Conclusion

The described method of computation of functional integrals based on a rigorous definition
of measure in metric spaces has important advantages over conventional Monte Carlo
simulation method. The employment of this approach replaces the evaluation of functional
integrals by computation of the ordinary ones of a low dimension thus allowing us to use the
more preferable deterministic algorithms and provides significant economy of computer time
and memory. This approach is very useful when other methods (perturbative, semiclassical
approximation, etc) cannot be applied. Our method works effectively also in a case of high
dimensions where other deterministic methods of numerical path integration as well as finite-
difference methods usually fail. Moreover, it is of no importance for implementation of this
method whether the interaction is pairwise or multiparticle, the funci@n) can depend

on its componentsy, ..., x, arbitrarily, because there is no need to reverse densely filled
high-order matrices. The advantages mentioned above prove this method to be a promising
tool for solving the many-body problems. We have found this approach to be convenient
for study of the complicated quantum systems [29]. Further work in this area is in progress.
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